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LETTER TO THE EDITOR 

Planar model correlation functions? 

Albert B Zisookt and Leo P Kadanoff 
The James Franck Institute, The University of Chicago, 5640 South Ellis Avenue, Chicago, 
IL 60637, USA 

Received 16 July 1980 

Abstract. Correlation functions are calculated on the critical line of the two-dimensional 
planar or XY model. A crossover is found between simple scaling behaviour for 2rKeff > 4, 
and more complex scaling behaviour for 2rKeff = 4 .  At the Kosterlitz-Thouless critical 
point, 2rKe,  = 4, logarithmic factors appear in the correlation functions. These corrections 
to simple scaling behaviour are calculated for many correlation functions, including 
correlation functions not previously studied. 

In previous discussions of the Kosterlitz-Thouless critical point, the behaviour of the 
order parameter correlation function has been examined in detail (Kosterlitz 1974, 
Amit et a1 1980). The basic result is that for large r 

(cos e ( r )  cos e(o))x ( ~ n r ) ” ~ / r ” ~ .  (1) 
In this Letter we present an explanation of how such logarithmic factors appear in the 
limit 27rKetr+ 4, and use this insight to calculate the asymptotic forms of many other 
correlation functions. 

The calculations are carried out in the generalised Villian model (Jose et a1 1977, 
Kadanoff 1979). The parameters are K, the nearest-neighbour coupling constant, and 
yo, the relative probability of a vortex excitation. When y o  = 0 there are no vortices and 
the model reduces to the exactly soluble Gaussian spin wave model. When yo  > 0 the 
model is in the planar or X Y  model universality class. 

The main idea of the calculation is to use the Kosterlitz flow equations to resum the 
perturbation series for correlation functions. In terms of the variables x, proportional 
to 27rK -4, and y, proportional to yo, the renormalisation group flow equations are 
(Kosterlitz 1974) 

dx/d l=  - r y 2 ,  dy/dl= - 4 . n ~ ~  ( r  + re-‘). (2) 
The method for resumming perturbation series can be easily demonstrated for the 

correlation function of two n = 2 spin wave operators, 

c(r, X, y )  = (COS 2e(4 COS 20(0)). 

To first order in x and y, C(r, x, y )  has scaling dimension 1-27rx. So C(r, x, y )  must obey 
the scaling equation 

(d/dl)C(r, x, y )  = (1 - 27rx)C(r, x, y). (3) 
t Supported in part by the National Science Foundation. 
$ NSF and Robert R McCormick Fellow. 

0305-4470/80/100379 +02$01.50 @ 1980 The Institute of Physics L379 



L380 Letter to the Editor 

The structure of C(r, x, y )  obtained in perturbation theory is 
1 m n + m  

n,m=O x = O  
C(r, x, y )  =; C an,m,kxnym(lnr)n+m-k. (4) 

By combining equations (2), (3) and (4) one obtains a recursion relation for the 
coefficients For k = 0 we obtain 

( n  + m)an,m,o + r ( n  + l ) a n + l , m - 2 , 0 +  ( 4 ~ m  - 2 ~ ) ~ n - l , m , 0  = 0. ( 5 )  

With the initial conditions un,o,o = ( 2 ~ ) “ / n  !, determined by the exact Gaussian 
result, and a,, 1, 0 = 0, determined by spin wave vortex ‘charge’ conservation, all the 
a n,m,O are determined. The unique (in this approximation) result is 

1/2 1 2x 
C(r, x, y )  = - ( cosh[2r(4x2 - y2)’/’ Inr] + 1/2 sinh[2r(4x2 - y2)1/2 In I ] )  , 

r (4X2-Y ) 
(6) 

This agrees precisely with a third-order perturbation calculation. 
Now we can examine the limit 2 rKeff+4.  When 2rKef i>4  (4x2-y2>O) one 

for large r ;  this is essentially the Gaussian result. obtains C(r, x, y )  = r 
But at the Kosterlitz-Thouless critical point, 27rKeff = 4 (y  = 2x), logarithms appear in 
the correlation function 

- 1 + 2 ~ r ( x * - y 2 / 4 ) 1 / 2  

~ ( r ,  x, y = 2x1 = (1 + 4 r x  Inr)”’/r, (7) 
These ideas can be extended to the case of n-point correlation functions. The result 

is (Xini = Ximi = 0) 

(noni,mi(ri)) = 

(U I Oni,mi(ri)) x = y = O  j < k  ( c o s ~ [ ~ T ( ~ x ~ - ~ ~ ) ” ~  In r ]  

-2(nink -mim,) 2x + ,12sinh[2r(4x2- y2)’l2 In r ] )  
(4x2 - Y 1 

The first factor on the right-hand side is the exactly known Gaussian result at ~ T K  = 4. 
In the limit y = 2x, equation (8) gives the leading Icgarithmic singularities in n-point 
correlation functions at the Kosterlitz-Thouless critical point. 

Further details on an alternate derivation of these results and other universal 
corrections to correlation functions will be reported elsewhere. 
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